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Abstract
Astage-structuredmodel of integrodifference equations is used to study the asymptotic
neutral genetic structure of populations undergoing range expansion. That is, we study
the inside dynamics of solutions to stage-structured integrodifference equations. To
analyze the genetic consequences for long term population spread, we decompose the
solution into neutral genetic components called neutral fractions. The inside dynamics
are then given by the spatiotemporal evolution of these neutral fractions. We show
that, under some mild assumptions on the dispersal kernels and population projection
matrix, the spread is dominated by individuals at the leading edge of the expansion.
This result is consistent with the founder effect. In the case where there are multiple
neutral fractions at the leading edge we are able to explicitly calculate the asymptotic
proportion of these fractions found in the long-term population spread. This formula is
simple and depends only on the right and left eigenvectors of the population projection
matrix evaluated at zero and the initial proportion of each neutral fraction at the leading
edge of the range expansion. In the absence of a strong Allee effect, multiple neutral
fractions can drive the long-term population spread, a situation not possible with the
scalar model.
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1 Introduction

There are a wide array of observational (Cullingham et al. 2011), empirical (Liebhold
et al. 1992; Lubina and Levin 1988), and theoretical studies (Li et al. 2009; Lui
1989a; Weinberger 1982) for the spatial spread of populations by range expansion.
Over the last decades, theoretical studies about range expansion mainly focused on the
asymptotic speed of propagation of the expanding population or the profile of invasion
(Hastings et al. 2005). Spatial models in population genetics have also been developed
for studying the spread of an advantageous gene in a population (Lui 1982a, b, 1983;
Weinberger 1978, 1982). Recently, much effort have been invested to understand
the genetic consequences of range expansion (Hallatschek and Nelson 2008; Roques
et al. 2012). Indeed, range expansions are known to have significant effects on genetic
diversity (Hewitt 2000; Davis and Shaw 2001). For instance, if range expansion occurs
through successive founder effects, genetic diversity is likely to decrease. However,
empirical and theoretical studies have shown that many mechanisms may reduce or
reverse the loss of diversity in an expanding population (Pluess 2011). In particular, the
presence of an Allee effect (Roques et al. 2012) which reduces the per-capita growth
rate at low density, the occurrence of long distance dispersal events (Bonnefon et al.
2014; Ibrahim et al. 1996), or the existence of a juvenile stage (Austerlitz and Garnier-
Géré 2003) may promote neutral genetic diversity in traveling waves of colonization.
In this work, we are interested in the neutral genetic dynamics of a stage-structured
population undergoing range expansion.

It is well known that the structure of the population is important for understanding
the asymptotic dynamics. For example, individuals often must undergo a maturation
period before they can produce offspring. For discrete population models, the dynam-
ics of the life history traits have typically been structured according to age, Leslie
matrix (Leslie 1945), or developmental stage, Lefkovitch matrix (Lefkovitch 1965),
but matrix models can be easily generalized to include other physiological character-
istics. It is also common for sessile species to typically have a motile stage in their
development, such as seed dispersal in plant populations (Howe and Smallwood 1982)
and larval dispersal in marine environments (Levin 2006).

Our study considers a stage-structured integrodifference equation describing range
expansion for a population of the form:

ut+1(x) =
∫ ∞

−∞
[K(x − y) ◦ B(ut (y))] ut (y) dy, (1)

where ut (x) corresponds to the population density at time t and location x . The
population is structured into m stages, whose densities are given by ut (x) =[
u1,t (x), . . . , um,t (x)

]
. Each stage distribution changes in time and space through

the successive effects of dispersal, described by the dispersal matrix K = [
k jl

]
, and

the demography, embodied in the population projectionmatrixB(u) = [
b jl(u)

]
which

takes into account density-dependence. The succession of the reproduction stage and
dispersal stage is described by the Hadamard product ◦ (element-wise multiplication
of matrix). This model allows the different stages to spread, reproduce, and interact
in a variety of ways that cannot be captured by scalar models (Neubert and Caswell
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2000). More precisely, if we consider stage j , where j = 1, . . . , m, then its density,
u j,t (x), satisfies the following equation

u j,t+1 =
∫ ∞

−∞

m∑
l=1

k jl(x − y)b jl(u1,t (y), . . . , um,t (y))ul,t (y) dy (2)

where k jl(x − y) dy is the probability that an individual transitioning from stage l
to stage j disperses from the interval (y, y + dy] to location x , and the function b jl

is the per-capita production of stage j individuals from stage l individuals. Such a
model has been used to describe epidemic spread (Lui 1989b), biological invasions
(Bateman et al. 2017; Veit and Lewis 1996), and critical domain size (Lutscher and
Lewis 2004).

Themodel (1) is biologically valid if the stages are chosen in a way such that the life
history and dispersal parameters vary within stages as little as possible. In some cases
this is easy; for example, a division between juvenile and adult individuals is normally
determined by the ability to reproduce. In other cases, the division may not be so clear,
and partitions may be difficult to decide. Fortunately, there are algorithms that can be
used to minimize errors associated with partitioning a population into distinct stages
(Moloney 1986; Vandermeer 1978). If the division of population structure is modeled
using a continuous variable such as size or mass, and there is no natural break point
to structure the population into distinct stages then an integral projection model may
be more appropriate (Easterling et al. 2000).

The goal of this work is to understand the neutral genetic patterns of structured
populations. Neutral genetic markers are genes that have no direct effect on individual
fitness. Even though this type of gene tells us nothing about the adaptive or evolutionary
potential of a population, neutral genetic markers can be used to understand processes
such as gene flow, genetic drift, migration, or dispersal (Holderegger et al. 2006).
It has also been shown by simulations that high levels of neutral genetic diversity
can be correlated with increased allelic richness at loci under selection (Bataillon
et al. 1996). Our analysis will be focused on the inside dynamics of stage-structured
integrodifference equations.

This paper is organized as follows. Section 2 is dedicated to providing neces-
sary background material for understanding the main results. Within this section,
we break it into two subsections: Sect. 2.1 provides background to the analysis
of inside dynamics and the stage-structured integrodifference equation used in our
analysis and Sect. 2.2 lays out four of the major assumptions made about the demo-
graphic and dispersal processes. In Sect. 3, we provide asymptotic results regarding
population structure. This section is broken into three parts. Section 3.1 covers the
inside dynamics of neutral fractions not present at the leading edge, Sect. 3.2 dis-
cusses the inside dynamics of neutral fractions that are located at the leading edge,
and Sect. 3.3 contains proofs for our main theorems. To complement the analytical
results, numerical simulations are given in Sect. 4. Finally, in Sect. 5, we dis-
cuss the modeling technique, results, numerical simulations, and implications of our
work.
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2 Materials andmethods

2.1 Inside dynamics

To study the neutral genetic distribution of a population, we consider the inside dynam-
ics of the population. The term inside dynamics refers to the inside structure of the
population rather than the total density. The key assumption in the analysis of inside
dynamics is that all individuals grow and disperse in the same manner, differing only
with respect to neutral genetic markers. In other words, all individuals in the pop-
ulation have the same fitness. This allows us to split up the population into distinct
subgroups called neutral fractions with which we track the spatiotemporal evolution
of these subgroups.

Inside dynamics have been studied for reaction-diffusion equations (Garnier and
Lewis 2016;Garnier et al. 2012;Roques et al. 2012), delay reaction-diffusion equations
(Bonnefon et al. 2013), integro-differential equations (Bonnefon et al. 2014), and
integrodifference equations (Lewis et al. 2018; Marculis et al. 2017). In these works,
the subject for analysis was a scalar population model. Indeed, to date, there is only
one study of the inside dynamics of systems of equations. This study concentrated on
the analysis on a diffusive Lotka-Volterra competition system (Roques et al. 2015).
Our mathematical contribution to this area of research is to extend the analysis of
inside dynamics to stage-structured integrodifference equations.

Recall the stage-structured populationmodel in (1). Separating the initial population
up into distinct neutral fractions, we obtain the initial condition

u0(x) =
n∑

i=1

vi
0(x), (3)

where vi
0(x) ≥ 0 is the initial population density for neutral fraction i and n is the

finite number of neutral fractions. An illustration of this decomposition can be seen
in Figs. 1a and 2a. By assuming that individuals in each neutral fraction grow and
disperse similarly, we obtain the following system of equations:

vi
t+1(x) =

∫ ∞

−∞
[K(x − y) ◦ B(ut (y))] vi

t (y) dy, i = 1, . . . , n, (4)

whereut (y) = ∑n
i=1 v

i
t (y). Throughout the remaining sections,we use the superscript

i to denote the neutral fraction and, when not written in vector form, subscript j to
denotes the stage. Note that the number of neutral fractions, n, and the number of
stages in the population, m, need not be the same (n �= m). Also, observe the model
given in Eq. (4) is natural extension of the scalar model to a system of recursions
(Marculis et al. 2017). Thus, it can be expected that many of the results proven for
the scalar equation can be extended to systems of cooperative equations. This is the
approach we take in what follows.

2.2 Demographic and dispersal assumptions

For each of our main theorems, we make five assumptions regarding Eqs (3)–
(4). The first three assumptions are related to the population projection matrix, the

123



Inside dynamics for stage-structured integrodifference equations

fourth assumption is related to the dispersal kernel, and the fifth and final assump-
tion is related to the decay of the initial conditions. In this section, we outline
the first four assumptions related to the demography and dispersal of the popula-
tion.

Population projection matrix

Webeginwith looking at the population projectionmatrixB(u). Here, we outline three
assumptions about the population projection matrix. The population projection matrix
describes reproduction, survival, and interactions between stages. As a projection
matrix, its entries should be nonnegative:

A1: The matrix B(u) is nonnegative for any u ∈ (0,∞)m .

Moreover, we can see from (1) that 0 is a steady state of the problem. Define

B0 := B(u)
∣∣
u=0. (5)

Notice that B0 is the population projection matrix evaluated at u = 0. We will assume
that this steady state is unstable. More precisely, we assume:

A2: B0 is a primitive matrix, that is there exists k > 0 such that Bk
0 is positive, and

its dominant eigenvalue, λ1, is greater than 1, λ1 > 1.

Finally, we assume that there are no Allee effects. That is:

A3: B(u) is bounded by its linearization at the steady state 0, B(u)v ≤ B0v for all
v ∈ (0,∞)m .

Dispersal kernel

In our model, we assume that individuals in the population may disperse at long
distance but those events are rare in the following sense:

Definition 1 A dispersal kernel, k(x), is called thin-tailed if there exists a ξ > 0, such
that

∫ ∞

−∞
k(x)eξ |x | dx < ∞. (6)

A dispersal kernel that is not thin-tailed is called a fat-tailed dispersal kernel, and in
this case, the long distance dispersal events become frequent, which leads to different
behaviors for some solutions, such as accelerating waves. Many of the classical math-
ematical results for (1), such as traveling wave solutions and the asymptotic speed of
propagation, rely on the assumption that the dispersal kernel is thin-tailed. A common
dispersal kernel that we consider throughout our work is the Gaussian probability
density function:

k(x;μ, σ) = 1√
2πσ 2

e− (x−μ)2

2σ2 , (7)
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where μ is the mean shift in location and σ 2 is the variance in dispersal distance.
In the following sections, we use the following shorthand notation to denote that the
dispersal kernel is Gaussian by k is N (μ, σ 2). In what follows, we will make one of
two assumptions about the dispersal kernels.

A4: Each kernel, k jl(x − y), is thin-tailed.
A4′: Each kernel, k jl(x − y), is N (μ, σ 2).

From above, we see that our fourth assumption provides a condition on the dispersal
kernels. In both cases, we assume, at a minimum, that every dispersal kernel is thin-
tailed in order to calculate the asymptotic speed of propagation. The above assumption
implies that we are not considering a population with accelerating waves (Kot et al.
1996).

Asymptotic speed of propagation

Under the previous assumptions A1–A4 we can deduce from the work of Lui (1989a)
that solutions of (1) will spread to the right with an asymptotic spreading speed c
greater than or equal to a critical spreading speed c∗ > 0 for appropriately chosen
initial conditions.Moreover, the critical spreading speed c∗ can be computed explicitly
by the following formula

c∗ := min
0<s<s+

1

s
ln ρ(s), (8)

where ρ(s) := ρ(H(s)) > 1 is the dominant eigenvalue of H(s) defined by

H(s) := M(s) ◦ B0. (9)

The moment generating function matrix M(s) is calculated by applying the reflected
bilateral Laplace transform to the dispersal kernel matrix K and is defined by

M(s) :=
∫ ∞

−∞
K(x)esx dx . (10)

Since the entries of the dispersal kernel matrix, k jl , are thin-tailed by Assumption A5,
this matrix is well defined over (0, s+) where s+ ∈ (0,∞]. Throughout our analysis,
we let s0(c) be the smallest positive root of the equation

cs = ln(ρ(s)) for c ≥ c∗. (11)

We know that s0(c) exists because ρ(s) is log convex; see Lemma 6.4 by Lui (1989a).
In particular, when each kernel is Gaussian, k jl is N (μ, σ 2), then we have an explicit
formula for the asymptotic speed of propagation given by

c∗ =
√
2σ 2 ln(λ1) + μ, (12)
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where λ1 is the dominant eigenvalue of B0 and we can explicitly compute s0(c) to be

s0(c) = c − μ + √
(c − μ)2 − 2σ 2 ln(λ1)

σ 2 . (13)

The technical details for the asymptotic speed of propagation are provided in
Appendix A.

3 Main results

Henceforth, we assume that the structured population, ut (x), satisfies (1) with an
initial condition u0(x). With such initial condition, the population is spreading to the
right with an asymptotic speed of propagation, c, greater than or equal to c∗, given by
formula (8). We first consider neutral fractions that are not present at the leading edge
of the solution and then afterwards consider neutral fractions that are at the leading
edge of the expanding population.

Our fifth and final assumption places a requirement on the initial conditions for the
neutral fractions. This requirement is closely connected to the decay rate of the solution
for the population and determines whether or not an individual is at the leading edge
of the population spread. In particular, we know that the traveling wave solution for
the linearized equation is given by an exponential function and the decay rate defines
the leading edge of the population. The technical details of whether or not a neutral
fraction is located at the leading edge is defined in the statement of our main theorems.
We do not explicitly write these out here, but rather save them for the statement of our
theorems because this assumption takes different forms based on our assumptions. We
are now ready to present our first two theorems, that provides sufficient conditions for
when the density of neutral fractions converges to zero in the moving half-frame.

3.1 Inside dynamics not at the leading edge

Theorem 3.1 Let us assume that A1-A4 hold true. Let vi
t (x) be a neutral fraction

satisfying (4) with initial condition vi
0(x) satisfying (3) that is not present at the

leading edge of the expanding population, in the sense that

A5: x2vi
0(x)es0(c)x ∈ L1(R) ∩ L∞(R) for a given c ≥ c∗.

Then, for any A ∈ R, the density of neutral fraction i , vi
t (x), converges to 0 uniformly

as t → ∞ in the moving half-frame [A + ct,∞).

In summary, Theorem 3.1 provides sufficient conditions for neutral fractions in the
population to approach zero asymptotically. This result implies that the only neutral
fractions that will contribute to the spread of the population are those that are initially
at the leading edge. In this scenario, we observe an extreme founder effect for the
population spread. For this proof, see Sect. 3.3.

By making a stronger assumption on the dispersal kernels, we are able to relax
Assumption A5 on the initial conditions in Theorem 3.1. In particular, for the next
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theorem we assume that all dispersal kernels are Gaussian with the same mean and
variance as given by Assumption A4′ and the assumption on the initial condition
becomes a simple integrability condition.

Theorem 3.2 Let us assume that A1–A3 and A4′ hold true. Let vi
t (x) be a neutral

fraction satisfying (4) with initial condition vi
0(x) satisfying (3) that is not present at

the leading edge of the expanding population, in the sense that

A5′:
∫ ∞
−∞ e

c−μ

σ2
yvi

0(y) dy < ∞ for a given c ≥ c∗.

Then, for any A ∈ R, the density of neutral fraction i , vi
t (x), converges to 0 uniformly

as t → ∞ in the moving half-frame [A + ct,∞).

In summary, Theorem3.2 provides the same result as Theorem3.1 butwith different
assumptions on the dispersal kernels and initial conditions. That is, Theorem 3.2
provides sufficient conditions for when the neutral fractions do not contribute to the
population spread. Under Assumption A5′ , we see that the leading edge is determined

by the decaying exponential e− c−μ

σ2
x . This condition is much different than those given

by Assumption A5 in Theorem 3.1. As in the previous theorem, we also observe here
that the only neutral fractions that will contribute to the spread of the population are
those that are initially at the leading edge. For this proof, see Sect. 3.3.

The proof of Theorem 3.1 is more complicated than that of Theorem 3.2, even
though the method of proof and conclusions are the same. The difference is due to the
assumptionsmade about the dispersal kernels. In Theorem 3.1we assume the dispersal
kernels are thin-tailed and must use the definition of the inverse reflected bilateral
Laplace transform. In Theorem 3.2 we assume all dispersal kernels are Gaussian with
the same mean and variance. This assumption simplifies the proof because convolving
Gaussian distributions results in another Gaussian.

If the initial conditions are all compactly supported, then all neutral fractions will
satisfy Assumption A5 and A5′ respectively in Theorems 3.1 and 3.2. If the initial
conditions decay according to the traveling wave solution, then all neutral fractions
except those at the leading edge will satisfy Assumption A5 and A5′ in Theorems
3.1 and 3.2 respectively. This means that the only neutral fractions that we will see
in the moving half-frame are those that were initially at the leading edge. However,
Theorems 3.1 and 3.2 do not tell us anything about these neutral fractions.

3.2 Inside dynamics at the leading edge

In the next theorem, we look at initial data that decay slower than Assumption A5′ in
Theorem 3.2. Here we are able to calculate the asymptotic proportion of each neutral
fraction provided we move at the slowest speed c∗.

Theorem 3.3 Let us assume that A1–A3 and A4′ hold true. Let vi
t (x) be a neutral

fraction satisfying (4) with initial condition vi
0(x) satisfying (3) that is present at the

leading edge of the expanding population, in the sense that for c = c∗

A5′′: vi
0(x) = (

pi
0 ◦ r

)
e− c−μ

σ2
x , where pi

0 is the initial proportion for neutral fraction
i in each stage, r is the right eigenvector of B0 corresponding to λ1.
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Then, for any A ∈ R, the density of neutral fraction i , vi
t (x), asymptotically approaches

a proportion, pi , of the traveling wave for the linear equation as t → ∞ in the moving
half-frame [A + ct,∞). That is,

lim
t→∞ vi

t (x0 + ct) = e− c−μ

σ2
x0rpi (14)

for x0 ≥ A. Moreover, the proportion can be calculated to be the scalar

pi = �
(
pi
0 ◦ r

)
(15)

where � is the left eigenvector of B0 corresponding to λ1 with � normalized by
〈
�T , r

〉
.

Theorem 3.3 provides a formula for the asymptotic proportion of neutral fractions
based on the initial distribution at the leading edge of the population. The formula is
simple because it depends only on the right and left eigenvectors of B0 and the initial
proportion of neutral fractions. This theorem characterizes the fate of neutral fractions
at the leading edge. One drawback to this theorem is that it is only valid for initial

conditions that decay at a specific rate, e− c−μ

σ2
x , with a solution that moves at a specific

speed, c = c∗. The reason why we cannot prove this theorem for c > c∗ and a slower
decay rate for the initial condition is because we do not have an explicit formula for
the spreading speed c > c∗. For this proof, see Sect. 3.3.

It is also important to note that A5′′ in Theorem 3.3 is not completely biologically
realistic since the population grows without bound as x → −∞. However, this type
of initial condition is needed based on the construction of our sub-solution and super-
solutions. Itmaybepossible to relax this assumption by studying the nonlinear operator
and considering a more biologically realistic class of initial conditions. Next, we
present the proofs of Theorems 3.1–3.3 in Sect. 3.3. For a comprehensive review of
the necessary mathematical material needed in the proofs of the theorems, we direct
the reader to Appendix B.

3.3 Proofs of themain theorems

Proof of Theorem 3.1

Proof For simplicity, we drop the superscript i in (4) and focus on a single neutral
fraction. Our equation of interest is

vt+1(x) =
∫ ∞

−∞
[K(x − y) ◦ B(ut (y))] vt (y) dy. (16)

Let

w0(x) = Ce−s0(c)x

1 + x2
(17)
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where C = κφ and φ is the eigenvector of H(s0(c)) with dominant eigenvalue
ρ(s0(c)). From Lemma B.1, we know that w0(x) is an upper bound for v0(x). By
Assumption A3, we know that B(ut (y))v ≤ B0v for all v ≥ 0. Hence, we can con-
struct a super-solution wt (x) that satisfies the following equation

wt+1(x) =
∫ ∞

−∞
[K(x − y) ◦ B0]wt (y) dy (18)

with initial condition given by (17). By iterating we can write the solution to the above
system as the t-fold convolution

wt (x) = [K(x − y) ◦ B0]
∗t w0(y). (19)

Applying the bilateral Laplace transform

Wt (s) = [M(s) ◦ B0]
t W0(s) (20)

= [H(s)]t W0(s). (21)

Recall that s0(c) is the smallest positive root of sc = ln(ρ(s)) for c ≥ c∗. Then, the
inverse transform as defined in Appendix B, see (130), yields

wt (x) = 1

2π i
lim

R→∞

∫ s0(c)+i R

s0(c)−i R
[H(s)]t W0(s)e

−sx ds (22)

= 1

2π

∫ ∞

−∞
[H(s0(c) + iω)]t W0(s0(c) + iω)e−(s0(c)+iω)x dω (23)

for c ≥ c∗. In the moving frame we have

wt (x0 + ct) = 1

2π

∫ ∞

−∞
[H(s0(c) + iω)]t W0(s0(c) + iω)e−(s0(c)+iω)x0e−(s0(c)+iω)ct dω.

(24)

Using the results from LemmaB.1, see Appendix B for details, we are able to write the
initial condition in terms of a Fourier transform that is known. This is seen as follows,

W0(s0(c) + iω) =
∫ ∞

−∞
w0(x)e(s0(c)+iω)x dx (25)

=
∫ ∞

−∞
w0(x)es0(c)x eiωx dx (26)

= F
[
w0(x)es0(c)x

]
(−ω) (27)

= Cπe−|ω| (28)
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for all ω ∈ R. Recall that C = κφ. This gives

wt (x0 + ct) = 1

2π

∫ ∞

−∞
[H(s0(c) + iω)]t Cπe−|ω|e−(s0(c)+iω)x0e−(s0(c)+iω)ct dω

(29)

= 1

2

∫ ∞

−∞
[H(s0(c) + iω)]t κe−s0(c)ctφe−|ω|e−(s0(c)+iω)x0e−iωct dω.

(30)

Since s0(c)c = ln(ρ(s0(c))), we have

wt (x0 + ct) = κe−s0(c)x0

2

∫ ∞
−∞

[H(s0(c) + iω)]t e− ln(ρ(s0(c)))tφe−|ω|e−iωx0e−iωct dω

(31)

= κe−s0(c)x0

2

∫ ∞
−∞

[H(s0(c) + iω)]t (ρ(s0(c))
−tφe−|ω|e−iωx0e−iωct dω.

(32)

Since ρ(s0(c)) is the dominant eigenvalue of H(s0(c)) with eigenvector φ,

wt (x0 + ct) = κe−s0(c)x0

2

∫ ∞
−∞

[H(s0(c) + iω)]t [H(s0(c))]
−t φe−|ω|e−iωx0e−iωct dω.

(33)

Applying the matrix norm and using the sub-additive property, we find that

‖wt (x0 + ct)‖ ≤ κe−s0(c)x0

2

∫ ∞
−∞

∥∥∣∣[H(s0(c) + iω)]t
∣∣∥∥

∥∥[H(s0(c))]
−t∥∥ ‖φ‖e−|ω| ∣∣∣e−iωx0

∣∣∣
∣∣∣e−iωct

∣∣∣ dω (34)

= κe−s0(c)x0

2

∫ ∞
−∞

∥∥∣∣[H(s0(c) + iω)]t
∣∣∥∥ ∥∥[H(s0(c))]

−t∥∥ ‖φ‖e−|ω| dω.

(35)

We can also see that

|H(s0(c) + iω)| = |M(s0(c) + iω) ◦ B0)| (36)

=
∣∣∣∣
∫ ∞

−∞
[K(x) ◦ B0]e(s0(c)+iω)x dx

∣∣∣∣ (37)

=
∣∣∣∣
∫ ∞

−∞
[K(x) ◦ B0]es0(c)x (cos(ωx) + i sin(ωx)) dx

∣∣∣∣ (38)

= I , (39)
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where I is defined to be

I :=
√(∫ ∞

−∞
[K(x) ◦ B0]es0(c)x cos(ωx) dx

)2
+

(∫ ∞
−∞

[K(x) ◦ B0]es0(c)x sin(ωx) dx

)2
.

(40)

By the Cauchy-Schwarz inequality, using a similar technique as in Theorem 3 of
(Marculis et al. 2017),

I <

∫ ∞

−∞
[K(x) ◦ B0]es0(c)x dx (41)

= M(s0(c)) ◦ B0 (42)

= H(s0(c)) (43)

for ω �= 0. From the above calculation we can conclude that |H(s0(c) + iω)| <

H(s0(c)) for ω �= 0. Consequently, ρ (|H(s0(c) + iω)|) < ρ(s0(c)) for ω �= 0. By
Gelfand’s formula,

lim
t→∞

∥∥∣∣[H(s0(c) + iω)]t
∣∣∥∥ 1

t = ρ(|H(s0(c) + iω)|) and (44)

lim
t→∞

∥∥[H(s0(c))]
−t

∥∥ 1
t = 1

ρ(s0(c))
. (45)

Thus, for ω �= 0, we can choose ε > 0 such that (ρ(|H(s0(c) + iω)|) + ε)(
1

ρ(s0(c))
+ ε

)
< 1. Therefore,

∥∥∣∣[H(s0(c) + iω)]t
∣∣∥∥ ∥∥[H(s0(c))]

−t
∥∥ < 1 (46)

for large t and

lim
t→∞

∥∥∣∣[H(s0(c) + iω)]t
∣∣∥∥ ∥∥[H(s0(c))]

−t
∥∥ = 0. (47)

From (35) and the dominated convergence theorem,

lim
t→∞ ‖wt (x0 + ct)‖

≤ κe−s0(c)x0

2

∫ ∞

−∞
lim

t→∞
∥∥∣∣[H(s0(c) + iω)]t

∣∣∥∥ ∥∥[H(s0(c))]
−t

∥∥ ‖φ‖e−|ω| dω (48)

= 0. (49)

Therefore, for any A ∈ R and c ≥ c∗,

lim
t→∞ max[A,∞)

wt (x + ct) = 0. (50)
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Since w was constructed as a super-solution, we can conclude that

lim
t→∞ max[A,∞)

vt (x + ct) = 0. (51)

The proof of Theorem 3.1 is complete. ��
Proof of Theorem 3.2

Proof For simplicity, we focus on a single neutral fraction and drop the superscript
i . By Assumption A3, B(ut (y))v ≤ B0v for all v ≥ 0, we can use a comparison
principle to show that a new sequence wt (x) defined by

wt+1(x) =
∫ ∞

−∞
[K(x − y) ◦ B0]wt (y) dy (52)

is always greater than the solution to any neutral fraction vt (x) with the same initial
condition, w0(x) = v0(x). By iterating we can write the solution to Eq. (52) as the
t-fold convolution

wt (x) = [K(x − y) ◦ B0]
∗t w0(y). (53)

Taking the bilateral Laplace transform

M[wt (x)](s) = [M[K(x)](s) ◦ B0]
t M[w0(x)](s). (54)

Since all of the dispersal kernels are Gaussian, we know that M[K(x)](s) =
e

σ2s2
2 +μs1 where 1 is a matrix of all ones. Then,

[M[K(x)](s) ◦ B0]
t M[w0(x)](s)

=
[

e
σ2s2
2 +μs1 ◦ B0

]t

M[w0(x)](s) (55)

=
[

e
σ2s2
2 +μsB0

]t

M[w0(x)](s) (56)

= e
σ2 ts2

2 +μts [B0]
t M[w0(x)](s) (57)

= [B0]
t M

[
1√

2πσ 2t
e
− (x−μt)2

2σ2 t

]
(s)M[w0(x)](s) (58)

= [B0]
t M [(Kt ∗ w0)(x)] (s) (59)

where Kt is N (μt, σ 2t). From (54)

M[wt (x)](s) = [B0]
t M [(Kt ∗ w0)(x)] (s). (60)
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Applying the inverse bilateral Laplace transform,

wt (x) = [B0]t (Kt ∗ w0)(x) (61)

= [B0]t
∫ ∞

−∞
1√

2πσ 2t
e
− (x−y−μt)2

2σ2 t w0(y) dy (62)

In the moving half-frame [A + ct,∞) with c ≥ c∗ we have

wt (x0 + ct) = [B0]t
∫ ∞

−∞
1√

2πσ 2t
e
− (x0+ct−y−μt)2

2σ2 t w0(y) dy. (63)

From (12), we know that c∗ = √
2σ 2 ln(λ1) + μ, expanding the exponent, yields

(x0 + ct − y − μt)2

2σ 2t
= (x0 − y)2

2σ 2t
+ 2(c − μ)t(x0 − y) + (c − μ)2t2

2σ 2t
(64)

≥ (x0 − y)2

2σ 2t
+ c − μ

σ 2 (x0 − y) + ln(λ1)t . (65)

Thus,

wt (x0 + ct) ≤ [B0]t

√
2πσ 2t

∫ ∞

−∞
e
− (x0−y)2

2σ2 t e− c−μ

σ2
(x0−y)e− ln(λ1)tw0(y) dy (66)

=
[
B0

λ1

]t 1√
2πσ 2t

∫ ∞

−∞
e
− (x0−y)2

2σ2 t e− c−μ

σ2
(x0−y)w0(y) dy. (67)

Since x0 ≥ A and e
− (x0−y)2

2σ2 t ≤ 1, we have

wt (x0 + ct) ≤
[
B0

λ1

]t e− A(c−μ)

σ2√
2πσ 2t

∫ ∞

−∞
e

c−μ

σ2
yw0(y) dy. (68)

From Lemma B.2, see Appendix B for details, we know that

lim
t→∞

[
B0

λ1

]t

= r�, (69)

where r and � are the right and left eigenvectors ofB0 corresponding to λ1 respectively
with � normalized by

〈
�T , r

〉
to account for the scaling in r. Note that r� is a m × m

matrix since r is m × 1 and � is 1 × m. Thus since
∫ ∞
−∞ e

c−μ

σ2
yw0(y) dy < ∞ by

Assumption A5′ and (69) we have wt (x0 + ct) → 0 uniformly as t → ∞ in [A,∞).
Recall that wt (x) was a constructed as a super-solution, 0 ≤ vt (x) ≤ wt (x). This
implies the uniform convergence of vt (x) → 0 as t → ∞ in the moving half-frame
[A + ct,∞). The proof of Theorem 3.2 is complete. ��
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Proof of Theorem 3.3

Proof For simplicity, we focus on a single neutral fraction and drop the superscript i .
Using the fact that B(ut (y))v ≤ B0v for all v ≥ 0 we can use a comparison principle
to show that a new sequence wt (x) defined by

wt+1(x) =
∫ ∞

−∞
[K(x − y) ◦ B0]wt (y) dy (70)

is a super-solution to any neutral fraction vt (x)with the same initial conditionw0(x) =
v0(x). By iterating we can write the solution to Eq. (70) as the t-fold convolution

wt (x) = [K(x − y) ◦ B0]
∗t w0(y). (71)

Taking the bilateral Laplace transform

M[wt (x)](s) = [M[K(x)](s) ◦ B0]
t M[w0(x)](s). (72)

Since all of the dispersal kernels are Gaussian, we know that M[K(x)](s) =
e

σ2s2
2 +μs1 where 1 is a matrix of all ones. Then, we can see that

[M[K(x)](s) ◦ B0]
t M[w0(x)](s)

=
[

e
σ2s2
2 +μs1 ◦ B0

]t

M[w0(x)](s) (73)

=
[

e
σ2s2
2 +μsB0

]t

M[w0(x)](s) (74)

= e
σ2 ts2

2 +μtsI [B0]
t M[w0(x)](s) (75)

= [B0]
t M

[
1√

2πσ 2t
e
− (x−μt)2

2σ2 t I
]

(s)M[w0(x)](s) (76)

= [B0]
t M [(Kt ∗ w0)(x)] (s) (77)

where Kt is a diagonal matrix with N (μt, σ 2t) entries and I is the identity matrix.
Thus, we have

M[wt (x)](s) = [B0]
t M [(Kt ∗ w0)(x)] (s). (78)

Then applying the inverse transform yields

wt (x) = [B0]t (Kt ∗ w0)(x) (79)

= [B0]t
∫ ∞

−∞
1√

2πσ 2t
e
− (x−y−μt)2

2σ2 t w0(y) dy (80)
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In the moving half-frame [A + ct,∞) with fixed A ∈ R, consider the element x0 + ct
with c = c∗ = √

2σ 2 ln(λ1) + μ where λ1 is the dominant eigenvalue of B0 as given
by (12). By rewriting wt (x) in this moving half-frame we have

wt (x0 + ct) = [B0]t
∫ ∞

−∞
1√

2πσ 2t
e
− (x0+ct−y−μt)2

2σ2 t w0(y) dy. (81)

Expanding the exponent, yields

(x0 + ct − y − μt)2

2σ 2t
= (y − x0)2

2σ 2t
+ (c − μ)(x0 − y)

σ 2 + (c − μ)2

2σ 2 t . (82)

Thus,

wt (x0 + ct)

= [B0]t

√
2πσ 2t

∫ ∞

−∞
e
− (y−x0)2

2σ2 t e− (c−μ)(x0−y)

σ2 e− (c−μ)2

2σ2
tw0(y) dy (83)

=
[
B0

λ1

]t 1√
2πσ 2t

∫ ∞

−∞
e
− (y−x0)2

2σ2 t e− (c−μ)(x0−y)

σ2 e

[
− (c−μ)2

2σ2
+ln(λ1)

]
t
w0(y) dy. (84)

Since c = c∗ = √
2σ 2 ln(λ1) + μ, we have that

wt (x0 + ct) =
[
B0

λ1

]t 1√
2πσ 2t

∫ ∞

−∞
e
− (y−x0)2

2σ2 t e− (c−μ)(x0−y)

σ2 w0(y) dy. (85)

From Assumption A5′′, w0(y) = (p0 ◦ r) e− c−μ

σ2
y . Thus,

wt (x0 + ct) =
[
B0

λ1

]t

(p0 ◦ r) e− (c−μ)

σ2
x0 1√

2πσ 2t

∫ ∞

−∞
e
− (y−x0)2

2σ2 t dy (86)

=
[
B0

λ1

]t

(p0 ◦ r) e− (c−μ)

σ2
x0 . (87)

From Lemma B.2, see Appendix B for details, we know that

lim
t→∞

[
B0

λ1

]t

= r� (88)

where r and � are the right and left eigenvectors ofB0 corresponding to λ1 respectively
where � is normalized by

〈
�T , r

〉
. Thus,

lim
t→∞wt (x0 + ct) = lim

t→∞

[
B0

λ1

]t

(p0 ◦ r) e− (c−μ)

σ2
x0 (89)
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= r� (p0 ◦ r) e− (c−μ)

σ2
x0 (90)

= e− (c−μ)

σ2
x0rp. (91)

From the above calculations, we find that the super-solution approaches a proportion,
p, of the traveling wave for the linear equation where p = � (p0 ◦ r). We now move
onto our sub-solution. For any 0 < ε � 1, δ is chosen such that (1− ε)B0δ = B(δ)δ

and we define

(Bsub(u; ε)) jl :=
{

(1 − ε) (B(u)) jl if (B(u)) jl is constant

β jl(u; ε) if (B(u)) jl is non-constant,
(92)

where

β jl(u; ε) :=
{

(1 − ε) (B0) jl for 0 ≤ u < δ

(B(u)) jl for u ≥ δ.
(93)

Then,

zt+1(x) =
∫ ∞

−∞
[K(x − y) ◦ Bsub(ut (y); ε)] zt (y) dy (94)

with z0(x) = v0(x) is a sub-solution of vt (x) by the comparison principle since
Bsub(u; ε)v ≤ B(u)v for all v ≥ 0. Define c(ε) := √

2σ 2 ln((1 − ε)λ1) + μ where
(1− ε)λ1 is the dominant eigenvalue of the constant matrix (1− ε)B0. In the moving
half-frame [A + c(ε)t,∞) with fixed A ∈ R, choose x0 large such that ut (y) in (94)
satisfies ut (y) < δ for all t where y ∈ [x0 + c(ε)t,∞). Then by the definition of
Bsub(u; ε)

zt+1(x0 + c(ε)t) =
∫ ∞

−∞
[K(x0 + c(ε)t − y) ◦ (1 − ε)B0] zt (y) dy. (95)

By iterating we can write the solution to (95) as the t-fold convolution

zt (x0 + c(ε)t) = [K(x0 + c(ε)t − y) ◦ (1 − ε)B0]
∗t z0(y). (96)

Since we assumed that all of the dispersal kernels are Gaussian, by repeating calcula-
tions done previously we find that

zt (x0 + c(ε)t) = [(1 − ε)B0]t
∫ ∞

−∞
1√

2πσ 2t
e
− (x0+c(ε)t−y−μt)2

2σ2 t z0(y) dy (97)

= [(1 − ε)B0]t

√
2πσ 2t

∫ ∞

−∞
e
− (x0−y)2

2σ2 t e− (c(ε)−μ)(x0−y)

σ2 e− (c(ε)−μ)2

2σ2
tz0(y) dy

(98)
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=
[
(1 − ε)B0

(1 − ε)λ1

]t 1√
2πσ 2t∫ ∞

−∞
e
− (x0−y)2

2σ2 t e− (c(ε)−μ)(x0−y)

σ2 e

[
− (c(ε)−μ)2

2σ2
+ln((1−ε)λ1)

]
t
z0(y) dy (99)

=
[
B0

λ1

]t 1√
2πσ 2t∫ ∞

−∞
e
− (x0−y)2

2σ2 t e− (c(ε)−μ)(x0−y)

σ2 e

[
− (c(ε)−μ)2

2σ2
+ln((1−ε)λ1)

]
t
z0(y) dy.

(100)

Since c(ε) = √
2σ 2 ln((1 − ε)λ1) + μ,

zt (x0 + c(ε)t) =
[
B0

λ1

]t 1√
2πσ 2t

∫ ∞

−∞
e
− (x0−y)2

2σ2 t e− (c(ε)−μ)(x0−y)

σ2 z0(y) dy. (101)

Note that the integrand in (101) is nonnegative and integrable. Using Fatou’s lemma
we fix t and let ε → 0, giving

zt (x0 + ct) = lim inf
ε→0

zt (x0 + c(ε)t) (102)

= lim inf
ε→0

[
B0

λ1

]t 1√
2πσ 2t

∫ ∞

−∞
e
− (x0−y)2

2σ2 t e− (c(ε)−μ)(x0−y)

σ2 z0(y) dy (103)

≥
[
B0

λ1

]t 1√
2πσ 2t

∫ ∞

−∞
lim inf

ε→0
e
− (x0−y)2

2σ2 t e− (c(ε)−μ)(x0−y)

σ2 z0(y) dy (104)

=
[
B0

λ1

]t 1√
2πσ 2t

∫ ∞

−∞
e
− (x0−y)2

2σ2 t e− (c−μ)(x0−y)

σ2 z0(y) dy. (105)

From Assumption A5′′, z0(y) = (p0 ◦ r) e− (c−μ)

σ2
y . Thus, by the same calculations

used in (86)–(87) for the super-solution

zt (x0 + ct) ≥
[
B0

λ1

]t

(p0 ◦ r) e− (c−μ)

σ2
x0 . (106)

From Lemma B.2, see Appendix B for details, we see that

lim
t→∞

[
B0

λ1

]t

= r�, (107)

where r and � are the right and left eigenvectors corresponding to λ1 respectively
where the � is normalized by

〈
�T , r

〉
. Thus,

lim
t→∞ zt (x0 + ct) ≥ lim

t→∞

[
B0

λ1

]t

(p0 ◦ r) e− (c−μ)

σ2
x0 (108)
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= r� (p0 ◦ r) e− (c−μ)

σ2
x0 (109)

= e− (c−μ)

σ2
x0rp. (110)

Asymptotically, our sub-solution is bounded below by a proportion of the traveling
wave for the linear equation where p = � (p0 ◦ r). Since our super-solution satisfies

lim
t→∞wt (x0 + ct) ≤ e− (c−μ)

σ2
x0rp, (111)

and our sub-solution satisfies

lim
t→∞ zt (x0 + ct) ≥ e− (c−μ)

σ2
x0rp (112)

it follows that

lim
t→∞ vt (x0 + ct) = e− (c−μ)

σ2
x0rp. (113)

The proof of Theorem 3.3 is complete. ��

4 Numerical simulations

In this section, we illustrate the theory of Sect. 3 with a numerical example. All simula-
tions were done using the fast Fourier transform technique (Cooley and Tukey 1965).
This method is better than classical quadrature because it speeds up the numerical
process from O(n2) to O(n log(n)).

We begin with a two-stage population model of juveniles, J , and adults, A. The
equations in this model are given below,

J i
t+1(x) =

∫ ∞

−∞
k(x − y)ζ(1 − m)J i

t (y) dy

+
∫ ∞

−∞
k(x − y) f0e−∑n

i=1
(
J i

t (y)+Ai
t (y)

)
Ai

t (y) dy,

Ai
t+1(x) =

∫ ∞

−∞
k(x − y)ζm J i

t (y) dy +
∫ ∞

−∞
k(x − y)ζ Ai

t (y) dy,

(114)

where

k(x − y) = 1√
2πσ 2

e− (x−y)2

2σ2 . (115)

The demography in (114) follows a classical model for biological invasions (Neubert
and Caswell 2000), but we assume Gaussian dispersal to align with the assumptions
in our theorems. In (114), ζ is the probability of survival to the next generation, m is
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the probability of maturation from a juvenile to an adult, f0 is the number of juveniles
produced by an adult in the absence of density-dependent effects. All individuals are
assumed to disperse according to a Gaussian dispersal kernel. The growth function
for adults producing juveniles is assumed to be a Ricker type growth function where
the nonlinearity depends on the density of both juveniles and adults. In the juvenile
equation of (114), juveniles can remain juveniles if they survive and do not mature
and adults from location y can produce juveniles that disperse to location x . In the
adult equation of (114), juveniles become adults if they survive and mature, and adults
remain adults if they survive from the previous year.

Let

vi
t (x) =

[
J i

t (x)

Ai
t (x)

]
, (116)

K(x − y) =
⎡
⎢⎣

1√
2πσ 2

e− (x−y)2

2σ2 1√
2πσ 2

e− (x−y)2

2σ2

1√
2πσ 2

e− (x−y)2

2σ2 1√
2πσ 2

e− (x−y)2

2σ2

⎤
⎥⎦ , and (117)

B(ut (y)) =
[
ζ(1 − m) f0e−∑n

i=1
(
J i

t (y)+Ai
t (y)

)

ζm ζ

]
. (118)

Then we can write (114) in the matrix and vector notation provided in (4).
First, let us verify that the assumptions of Theorems 3.2 and 3.3 are satisfied. Recall

thatAssumptions A1–A3 and A4′ are the same for these two theorems. ForAssumption
A1, it is clear that our population projection matrix, B(ut (y)), is nonnegative from
(118) since ζ, m, f0 > 0. We can calculate B0 to be

B0 =
[
ζ(1 − m) f0

ζm ζ

]
. (119)

Thus, B0 is primitive. For Assumption A2, the dominant eigenvalue of B0 is greater
than one if

f0 >
(1 − ζ )(1 − ζ(1 − m))

ζm
. (120)

For details of this calculation see Proposition 3.1 of Marculis and Lui (2016). Since
e−∑n

i=1
(
J i

t (y)+Ai
t (y)

)
≤ 1 we have B(ut (y))v ≤ B0v for all v ≥ 0 and Assumption

A3 is satisfied. Even though our operator is not order preserving because of the over-
compensation in the Ricker function, Proposition 3.1 in Li et al. (2009) suggests that
the calculation for the spreading speed should still hold true. Assumption A4′ is clear
from the definition of (117). Finally, if we assume our initial condition to decay faster

than e− c−μ

σ2
x , then the neutral fractions will satisfy Assumption A5′ of Theorem 3.2

and we can see that (114) has a unique positive steady state given by

J ∗ = 1 − ζ

ζm
A∗ and A∗ = − ln

(
(1 − ζ )(1 − ζ(1 − m))

f0ζm

)
, (121)
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see again Proposition 3.1 ofMarculis and Lui (2016). In our numerical simulations the

only neutral fraction that does not decay faster than e− c−μ

σ2
x is the one at the leading

edge because it was chosen to have an initial form of the traveling wave solution
with c = c∗. It should be mentioned here that since we are solving this problem
numerically it is solved on a finite domain and this is only an approximation to the
solution. Therefore, in the moving half-frame, the only neutral fractions that we see
are the ones initially at the leading edge. The neutral fractions at the leading edge do
not satisfy the exact Assumption A5′′ of Theorem 3.3, but asymptotically they decay

like e− c−μ

σ2
x . However, the asymptotic proportion calculated from Theorem 3.3 agrees

with the numerical simulation suggesting that this result should be able to extend to a
wider array of initial conditions.

We provide some numerical simulations to see the neutral genetic patterns produced
by (114). We begin by running a simulation where the juvenile and adult populations
have the same initial distribution as seen in Fig. 1a. This simulation shows that the
spread of both juveniles and adults is dominated by the neutral fraction at the lead-
ing edge as seen in Fig. 1b. Switching the ordering of the neutral fractions behind
the leading edge does not affect the asymptotic behavior in the moving frame. This
observation is consistent with the founder effect. The simulations seen in Fig. 1 agree
with the results of Theorems 3.2 and 3.3.

For our next simulation, we consider the case where the distribution of the neutral
fractions of juveniles and adults do not appear in the same order. This is seen in
Fig. 2a. Here we keep the same initial distribution of juvenile individuals as in Fig. 1a,
but the initial distribution of adult neutral fractions is assorted differently. In Fig. 2a
we can see that initially the neutral fractions at the leading edge of the juvenile and
adult populations are light gray and red respectively. Figure 2b shows the distribution
of neutral fractions at t = 100. At the leading edge the spread is dominated by the

Fig. 1 Numerical realization of (114) for the parameter values σ 2 = 0.01, μ = 0, ζ = 0.7, m = 0.8, and
f0 = 2.5 for n = 8 neutral fractions. In a the plots are the initial conditions for the juvenile and adult
populations. Notice that the distribution of neutral fractions for juvenile and adult populations have the
same order. In b we plot the densities of the juvenile and adult neutral fractions at t = 100
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Fig. 2 Numerical realization of (114) for the parameter values σ 2 = 0.01, μ = 0, ζ = 0.7, m = 0.8, and
f0 = 2.5 for n = 8 neutral fractions. For these parameters u∗ = (J∗, A∗) = (0.5900, 1.1013). In a the
plots are the initial conditions for the juvenile and adult population. Notice that the distribution of the first
two neutral fractions is different for juveniles and adults. The plots in b are the densities of the juvenile
and adult neutral fractions at t = 100. The neutral genetic pattern produced here is due to the difference
in the initial distribution of neutral fractions for juveniles and adults. The dashed lines in b are calculated
from Theorem 3.3, they represent the proportions of red juveniles and adults. Behind the leading edge the
proportions are p2 J∗ = 0.3629 for juveniles and p1A∗ = 0.4238 for adults

light gray and red neutral fractions. This simulation agrees with our theoretical results
because Theorem 3.2 and 3.3 suggest that the spread should be dominated by the
neutral fractions that are initially at the leading edge of the population. Again we see
that the neutral fractions behind the leading edge do not contribute to the asymptotic
spread.

5 Discussion

The main objective of this work is to understand the effect that stage-structure has
on the neutral genetic composition of expanding populations as outlined in Sect. 1.
We derived the model for the inside dynamics of a stage-structured integrodifference
equation in Sect. 2.1. Section 2.2 describes five of our main assumptions related to
demography and dispersal. Four of these assumptions are related to the population
projection matrix and the fifth is related to the form of the dispersal kernel.

The three main results of the paper are provided in Sect. 3, with their respective
proofs in Sect. 3.3. Theorem 3.1 is our first main result, which provides sufficient con-
ditions for a neutral fraction to converge uniformly to zero in the moving half-frame.
The five assumptions that must be satisfied are as follows: the population projection
matrix must be nonnegative, the population projection matrix evaluated at zero must
be primitive and its dominant eigenvalue must be greater than one, the population
projection matrix must be maximal at the trivial steady state, all dispersal kernels
must be thin-tailed, and the initial condition must satisfy the decay assumption given
in Lemma B.1. It should be noted that the Dirac delta function is a thin-tailed disper-

123



Inside dynamics for stage-structured integrodifference equations

sal kernel and thus we can consider cases where there is no dispersal between some
transitions making this theorem very general in terms of the dispersal assumptions.

The second main result is Theorem 3.2. Similar to Theorem 3.1, this theorem also
shows conditions under which each neutral fraction converges uniformly to zero in
the moving half-frame. The difference with this theorem is that we make a stronger
assumption on the dispersal kernels in exchange for a weaker condition on the ini-
tial condition. In particular, we assume that all dispersal kernels are Gaussian with
identical means and variances. Due this this assumption, we are then able to relax the
decay condition on the initial condition of the population to be slightly weaker than is
required for Theorem 3.1. The proof for Theorem 3.2 is more elegant than the proof
for Theorem 3.1. However, this comes at some cost in the biological realism of the
model since it is not common for all stages and transitions to disperse exactly via a
Gaussian distribution.

The final result is given in Theorem 3.3. The first four assumptions of this theorem
are the same as Theorem 3.2. The fifth assumption assumes that the initial condition
decays according to the traveling wave ansatz for the linear equation. Under these
assumptions, we are able to asymptotically calculate the proportion that each neutral
fraction approaches in the moving frame. This proportion is dependent on the right
and left eigenvectors of the population projection matrix evaluated at zero and the
initial proportion of each neutral fraction at the leading edge. The proof relies on
the construction of super- and sub-solutions to the system. The super-solution, as
expected, is chosen to be the linearization of our operator while the sub-solution
is defined in a piecewise manner to lie below the nonlinearities. Since all dispersal
kernels were assumed to be identical Gaussian distributions, the proportion calculated
by Theorem 3.3 does not apply when some stages and transitions do not disperse in
the same way.

After completion of the mathematical results, we performed some numerical sim-
ulations in Sect. 4 to compare our analytical results to a reasonable biological model.
We chose to look at a classical two-stage juvenile adult model where dispersal occurs
between all stages and transitions. The first simulation, in Fig. 1, shows that the spread
is dominated by the neutral fraction at the leading edge which is an extreme version
of the founder effect. However, since we are working with a system of equations, it is
possible for the initial distribution of neutral fractions in the juvenile and adult stages
to be different. This is seen in Fig. 2a. As predicted from Theorem 3.2, in Fig. 2b, we
see that all neutral fractions, except the ones at the leading edge of the juvenile and
adult populations, converge uniformly to zero in the moving half-frame. The asymp-
totic proportions for the two neutral fractions that were initially at the leading edge
of the juvenile and adult populations are given by the formula in Theorem 3.3 and
plotted as the dashed line in Fig. 2b.

As expected, some of the same results obtained here are similar to those for the
scalar population model. That is, Theorems 3.1 and 3.2 are equivalent to their scalar
counterparts, Theorem 3 and Theorem 1 respectively, given in Marculis et al. (2017).
However, Theorem 3.3 provides a new result for a special case of interacting neutral
fractions at the leading edge. This is not possible in the scalar population model.
From this theorem, we see the ability for multiple neutral fractions to contribute to
the spread of the population. Contributions from multiple neutral fractions to the
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population spread are only possible in the scalar model when there is a strong Allee
effect (Marculis et al. 2017). Although we would expect similar behavior from our
stage-structured model, we are not able to analyze the inside dynamics of a stage-
structured model with a strong Allee effect. This is due to the requirement that our
results for the strong Allee effect in scalar systems rely on the operator being compact.
For a systemof equations the necessary theory ismore complicated andwewere unable
to perform this analysis. In the special case where all dispersal kernels are Gaussian
with the same mean and variance and all entries of the population projection matrix
have the same strong Allee effect type per-capita growth function, then Theorem 2
given in Marculis et al. (2017) can be applied. However, such stringent assumptions
would defeat the purpose for considering a stage-structured population model because
all stages and transitionswould growanddisperse in the sameway, essentially reducing
the stage-structured model to a scalar equation.

The interesting additional feature that the stage-structured population model offers
over scalar models is the ability to have a different initial distribution of neutral frac-
tions for each stage. This difference can lead to multiple neutral fractions driving the
spread of the population. Here, we see these dynamics solely for the reason that the
initial spatial distribution of neutral fractions is different for each stage.

Several assumptions about the integrodifference dynamics and dispersal kernels
limit the applicability of the results in this paper. One limitation to the applicability
of our work is seen in Assumption A3. Here we require that our population projec-
tion matrix is maximal at zero. This means that we are not considering any kind of
demography with Allee effects. In order to prove the asymptotic proportion result seen
in Theorem 3.3 we make some restrictive assumptions on the dispersal kernels and
initial conditions in the model. Assumption A4′ in Theorem 3.3 states that all disper-
sal kernels are Gaussian with the same mean and variance. This assumption may be
unrealistic for many populations because the reason to use a stage-structured popu-
lation model over a scalar population model is to include differences in demography
and dispersal between stages. Assumption A5′′ in Theorem 3.3 makes the assumption
that the initial conditions are in the form of the traveling wave ansatz for the linear
equation. It would be beneficial to generalize Theorem 3.3 for initial conditions that
are in the form of the traveling wave solution. The numerical simulations show that
we should be able to relax our sixth assumption in our in theorems to a more general
class of initial conditions. These simulations are not only useful for verifying our
mathematical results, but they also provide some insight into opportunities for further
mathematical analysis.
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A Asymptotic speed of propagation for a system

The following Proposition is taken from Lui (1989a). Let β ∈ R
n be a positive vector.

We define

C = {u = (u1, . . . , un) | 0 ≤ u(x) ≤ β, ui (x) : R → [0,β i ]
is piecewise continuous for i = 1, ..., n}.

The operator Q used in our analytical results is given by

Q[u] =
∫ ∞

−∞
[K(x − y) ◦ B(u(y))] u(y) dy. (122)

Proposition A.1 Let Q = (Q1, ..., Qn) : C → C satisfy the following conditions:

(1) Q[0] = 0 , Q[β] = β, 0 is unstable and β is stable with respect to Q.
(2) Q is translation invariant and has no other fixed-point besides 0 and β in C.
(3) Q is monotone or order-preserving in C; that is, if u ≤ v in C, then Q[u] ≤ Q[v].
(4) Q is continuous in the topology of uniform convergence on bounded subsets of R.
(5) Let

(M[u](x))i =
n∑

j=1

∫ ∞

−∞
u j (x − y)mi j (y) dy . (123)

be the linearization of Q at 0, where mi j (y) ≥ 0 is an integrable function. We
assume that

Q[u] ≤ M[u] for all u ∈ C . (124)

(6) The matrix B(s) = (bi j (s)), where

bi j (s) =
∫ ∞

−∞
esy mi j (y) dy (125)

is irreducible for 0 < s < s+.

Let ρ(s) be the dominant eigenvalue of B(s) and let

c∗ = min
0<s<s+

1

s
ln ρ(s) . (126)

Then c∗ is the asymptotic speed of propagation of the operator Q in the positive
direction in the following sense. Let u0 ∈ C, u0 is non-trivial and vanishes outside of
a bounded interval in R. Let u t be defined by u t+1 = Q[ut ] for t = 0, 1, 2 . . .. Then
for any small ε > 0,

lim
t→∞ min

x≤t(c∗−ε)
|u t (x) − β| = 0 (127)
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and lim
t→∞ max

x≥t(c∗+ε)
|u t (x)| = 0 . (128)

B Mathematical details

The purpose of this section is to provide themathematical background needed to prove
the theorems in Sect. 3. One tool that is used throughout all of our theorems is the
reflected Bilateral Laplace transform.

Definition 2 Let f : R → R where f is piecewise continuous on every finite interval
in R and there exists a M ∈ R

+ such that | f (x)| ≤ Me−sx for all x ∈ R and
0 < s < s+. Then, the reflected bilateral Laplace transform and its inverse are defined
to be

F(s) = M[ f (x)] :=
∫ ∞

−∞
f (x)esx dx, and (129)

f (x) = M−1[F(s)] := 1

2π i
lim

R→∞

∫ γ+i R

γ−i R
F(s)e−sx ds (130)

for 0 < s < s+, where the integration in Eq. (130) is over the vertical line, Re(s) = γ

in the complex plane and γ is greater than the real parts of all singularities of F(s).

By using the convolution theorem, the reflected bilateral Laplace transform can be
used to write the solution to our model in terms of the initial condition. This theorem
states that the reflected bilateral Laplace transform of a convolution is the product of
the reflected bilateral Laplace transforms. That is,

M[ f (x) ∗ h(x)](s) = F(s)H(s). (131)

Note that the reflected bilateral Laplace transform of a probability density function is
also referred to as its moment generating function.

Next, we provide results regarding vector andmatrix analysis that are relevant to our
subsequent analysis. First, it should be noted that when we write x ≥ y, the inequality
is element-wise. That is, xi ≥ yi for each i . In a similar manner, x > y means that
xi > yi for each i . For the matrix analysis, the following definitions and proposition
are needed:

Definition 3 Let λ1, . . . , λm be the eigenvalues of a matrix A. Then its spectral radius
ρ(A) is defined as:

ρ(A) := max
i=1,...,m

|λi | . (132)

In otherwords, the spectral radius of amatrixA is themodulus of the largest eigenvalue.

Definition 4 A matrix A is called nonnegative, A ≥ 0, if ai j ≥ 0 for all i, j .
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Definition 4 states that a matrix is nonnegative if all elements of the matrix are greater
than or equal to zero. Next, we consider primitive matrices.

Definition 5 A nonnegative matrix A is primitive if there is a positive integer k such
that Ak > 0.

Another important concept is that of the dominant eigenvalue of a matrix.

Definition 6 Let λ1, . . . , λm be the eigenvalues of an m × m matrix A. If |λ1| > |λ j |
for j = 2, . . . m, then λ1 is called the dominant eigenvalue of A.

Next, we discuss the Perron-Frobenius theorem for nonnegative primitive matrices
(Bapat and Raghavan 1997).

Proposition B.1 (Perron-Frobenius theorem) Let A ≥ 0 be an m ×m primitive matrix.
Then Ay = λ1y for some λ1 > 0, y > 0 where

(i) The eigenvalue λ1 is algebraically simple.
(ii) The eigenvalue λ1 is dominant. That is, for any other eigenvalue μ ofA, |μ| < λ1.
(iii) The only nonnegative eigenvectors of A are positive scalar multiples of y.

By the Perron-Frobenius theorem we know that the spectral radius of a nonnegative
primitive matrix is equal to the dominant eigenvalue of that matrix; ρ(A) = λ1. In our
analysis we also make use of the Jordan canonical form for square matrices. We use
this decomposition because while a nonnegative primitive matrix is not necessarily
diagonalizable, every squarematrix can none-the-less bewritten in its Jordan canonical
form.

Definition 7 For any square matrix A, there exists a matrix J such that

A = PJP−1, (133)

where J is the Jordan canonical form of A. The Jordan canonical form is a block
diagonal matrix

J =
⎡
⎢⎣
J1 . . . 0
...

. . .
...

0 . . . Jb

⎤
⎥⎦ , (134)

where each Ji is called a Jordan block of A. For Jordan block i , the diagonal entries
are λi , the superdiagonal entries are one, and all other entries are zero.

Next, we present two lemmas that were used in the proofs of themain theorems. The
first lemma was used in Theorem 3.1 and bounds our initial condition for each neutral
fraction i for each stage j , vi

j,0(x), sufficiently to establish the uniform convergence
results for the neutral fractions.

Lemma B.1 Let x → vi
j,0(x) satisfy x2vi

j,0(x)esx ∈ L1(R) ∩ L∞(R), then for each
s > 0 there exists a positive constant C j such that
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wi
j,0(x) = C j e−sx

1 + x2
(135)

bounds vi
j,0(x) for all x ∈ R. Moreover, the Fourier transform of wi

j,0(x)esx with

respect to x is in L1(R) and is given by

C jπe−|ω|. (136)

For the proof of Lemma B.1, we refer the reader to Lemma 1 byMarculis et al. (2017).
We next provide a lemma that will be used in the proofs of the Theorems 3.2 and 3.3.

In particular, we make use of the Jordan canonical form and the Perron-Frobenius
theorem outlined above.

Lemma B.2 Assume that the matrix B0 is nonnegative and primitive. Let λ1 be the
dominant eigenvalue of B0, then

lim
t→∞

[
B0

λ1

]t

= r� (137)

where r and � are the right and left eigenvectors corresponding to λ1 respectively with
� normalized by

〈
�T , r

〉
to account for the scaling in r.

Proof Writing B0 in terms of its Jordan canonical form, we have

lim
t→∞

[
B0

λ1

]t

= lim
t→∞

[
PJP−1

λ1

]t

(138)

= lim
t→∞

PJtP−1

λt
1

. (139)

Since J is block diagonal,

Jt =
⎡
⎢⎣
Jt
1 . . . 0
...

. . .
...

0 . . . Jt
b

⎤
⎥⎦ . (140)

By the Perron-Frobenius theorem there exists a dominant eigenvalue λ1 ofB0 because
B0 is nonnegative and primitive . The first Jordan block is J1 = [

λ1
]
and Jt

1 = [
λt
1

]
.

For Jordan block j of size b j × b j we have

Jt
j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λt
j

(t
1

)
λt−1

j . . .
( t

b j −2

)
λ

t−b j +2
j

( t
b j −1

)
λ

t−b j +1
j

0 λt
j . . .

( t
b j −3

)
λ

t−b j +3
j

( t
b j −2

)
λ

t−b j +2
j

...
...

. . .
...

...

0 0 . . . λt
j

(t
1

)
λt−1

j
0 0 . . . 0 λt

j

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(141)
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for t ≥ b j − 1. Since |λ j | < λ1, using L’Hôpital’s rule, we have

lim
t→∞

Jt
j

λt
1

= 0 (142)

for j = 2, . . . , b. Returning to the Jordan canonical form,

lim
t→∞

Jt

λt
1

=
⎡
⎢⎣
1 . . . 0
...

. . .
...

0 . . . 0

⎤
⎥⎦ . (143)

Hence from (139),

lim
t→∞

PJtP−1

λt
1

= P lim
t→∞

Jt

λt
1
P−1 (144)

= P

⎡
⎢⎣
1 . . . 0
...

. . .
...

0 . . . 0

⎤
⎥⎦P−1 (145)

= r� (146)

because r is the first column vector of P and � is the first row vector of P−1. Therefore,
from (139) and (146),

lim
t→∞

[
B0

λ1

]t

= r�. (147)

The proof of Lemma B.2 is complete. ��
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